skip to main content


Search for: All records

Creators/Authors contains: "Cerling, Thure E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Individual animals should adjust diets according to food availability. We used DNA metabarcoding to construct individual-level dietary timeseries for elephants from two family groups in Kenya varying in habitat use, social position and reproductive status. We detected at least 367 dietary plant taxa, with up to 137 unique plant sequences in one fecal sample. Results matched well-established trends: elephants tended to eat more grass when it rained and other plants when dry. Nested within these switches from ‘grazing’ to ‘browsing’ strategies, dietary DNA revealed seasonal shifts in food richness, composition and overlap between individuals. Elephants of both families converged on relatively cohesive diets in dry seasons but varied in their maintenance of cohesion during wet seasons. Dietary cohesion throughout the timeseries of the subdominant ‘Artists’ family was stronger and more consistently positive compared to the dominant ‘Royals’ family. The greater degree of individuality within the dominant family's timeseries could reflect more divergent nutritional requirements associated with calf dependency and/or priority access to preferred habitats. Whereas theory predicts that individuals should specialize on different foods under resource scarcity, our data suggest family bonds may promote cohesion and foster the emergence of diverse feeding cultures reflecting links between social behaviour and nutrition. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. The 14-carbon in animal tissues records the time that the tissues are formed; since the 1960s, using the “bomb curve” for 14 C, the age of animal death can be determined accurately. Using animal tissue samples of known collection and formation dates for calibration, we determine the age of ivory samples from four ivory seizures made by law enforcement agencies between 2017 and 2019. The 14 C measurements from these seizures show that most ivory in the illegal wildlife trade is from animals from recent poaching activities. However, one seizure has a large fraction of ivory that is more than 30 y old, consistent with markings on the tusks indicating they were derived from a government stockpile. 
    more » « less
  3. Studies of Rancho La Brea predators have yielded disparate dietary interpretations when analyzing bone collagen vs. enamel carbonate—requiring a better understanding of the relationship between stable carbon isotopes in these tissues. Stable carbon isotope spacing between collagen and carbonate (Δ ca-co ) has also been used as a proxy for inferring the trophic level of mammals, with higher Δ ca-co values indicative of high carbohydrate consumption. To clarify the stable isotope ecology of carnivorans, past and present, we analyzed bone collagen (carbon and nitrogen) and enamel carbonate (carbon) of extinct and extant North American felids and canids, including dire wolves, sabertooth cats, coyotes, and pumas, supplementing these with data from African wild dogs and African lions. Our results reveal that Δ ca-co values are positively related to enamel carbonate values in secondary consumers and are less predictive of trophic level. Results indicate that the foraging habitat and diet of prey affects Δ ca-co in carnivores, like herbivores. Average Δ ca-co values in Pleistocene canids (8.7+/−1‰) and felids (7.0+/−0.7‰) overlap with previously documented extant herbivore Δ ca-co values suggesting that trophic level estimates may be relative to herbivore Δ ca-co values in each ecosystem and not directly comparable between disparate ecosystems. Physiological differences between felids and canids, ontogenetic dietary differences, and diagenesis at Rancho La Brea do not appear to be primary drivers of Δ ca-co offsets. Environmental influences affecting protein and fat consumption in prey and subsequently by predators, and nutrient routing to tissues may instead be driving Δ ca-co offsets in extant and extinct mammals. 
    more » « less
  4. Breath and diet samples were collected from 29 taxa of animals at the Zurich and Basel Zoos to characterize the carbon isotope enrichment between breath and diet. Diet samples were measured for δ 13 C and breath samples for CH 4 /CO 2 ratios and for the respired component of δ 13 C using the Keeling plot approach. Different digestive physiologies included coprophagous and non-coprophagous hindgut fermenters, and non-ruminant and ruminant foregut fermenters. Isotope enrichments from diet to breath were 0.8 ± 0.9‰, 3.5 ± 0.8‰, 2.3 ± 0.4‰, and 4.1 ± 1.0‰, respectively. CH 4 /CO 2 ratios were strongly correlated with isotope enrichments for both hindgut and foregut digestive strategies, although CH 4 production was not the sole reason for isotope enrichment. Average CH 4 /CO 2 ratios per taxon ranged over several orders of magnitude from 10 –5 to 10 –1 . The isotope enrichment values for diet-breath can be used to further estimate the isotope enrichment from diet-enamel because Passey et al. (2005b) found a nearly constant isotope enrichment for breath-enamel for diverse mammalian taxa. The understanding of isotope enrichment factors from diet to breath and diet to enamel will have important applications in the field of animal physiology, and possibly also for wildlife ecology and paleontology. 
    more » « less
  5. Abstract

    Strontium isotope ratios (87Sr/86Sr) of incrementally grown tissues have been widely used to study movement ecology and migration of animals. However, the time scale of87Sr/86Sr incorporation from the environment into tissue and how it may influence data interpretation are still poorly understood. Using the relocation of a zoo elephant (Loxodonta africana) named Misha, we characterise and model the87Sr/86Sr turnover process using high‐resolution measurements of its tusk dentine. We seek to develop a framework that can improve quantitative interpretation of87Sr/86Sr data in tissues.

    The87Sr/86Sr transition associated with the relocation is measured using laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) on a prepared tusk slab. We develop a turnover model (BITS), with a rapidly exchanging central pool and a slowly exchanging peripheral pool, in a Bayesian statistical framework. The measured dentine data are first used to calibrate model parameters. The parameters are then used to estimate possible87Sr/86Sr input time series from two datasets via model inversion: a fidelity test using Misha's dentine data and a case study using published dentine measurements from an Alaskan Woolly Mammoth (Mammuthus primigenius).

    The LA‐ICP‐MS data are consistent with a two‐compartment turnover process with equivalent half‐lives of 41 days for the central pool and 170 days for the peripheral pool. The model inversion shows good fidelity when estimating the intake87Sr/86Sr time series associated with Misha's relocation. In the case study, the model suggests an abrupt pattern of change in, and a much wider range of, intake87Sr/86Sr values than expressed in the woolly mammoth dentine data themselves.

    Our framework bridges the gap between environmental87Sr/86Sr variation and data measured in tusk dentine or other incrementally grown tissues. It could be coupled with movement models and additional isotope tracers to study seasonal residency or the spatial and temporal patterns of movement/migration. The generic turnover processes can be adapted to other isotope systems, additional incremental tissues, or other organisms, thus expanding our modelling toolkit to investigate niche partitioning, life history traits and behavioural patterns in conservation biology, archaeology and paleoecology.

     
    more » « less
  6. null (Ed.)
  7. The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO2) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO2beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO2record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO2thresholds in biological and cryosphere evolution.

     
    more » « less
    Free, publicly-accessible full text available December 8, 2024